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The (d=2)-dimensional spin model composed of alternating strips of two 
different Ising magnets is revisited. Application of modern techniques results 
in explicit exact solution for the free energy and correlation lengths of the 
continuous (field-theoretic) limit of the model. In agreement with earlier results, 
the specific heat generally exhibits three different critical features: two near the 
respective critical temperatures Tot and To2 of the composing models, as well as 
a new superlattice transition at Tct < T~ < To2. Further analysis shows that at 
all temperatures between T~ and 7",. 2 the correlations in the system include a 
low-amplitude but very long-range component reflecting fluctuations in a large- 
scale domain wall network. The essential features of the solution can be 
explained by a reentrant dimensional crossover from the d= 2, bulk behavior 
within the strips, to one-dimensional criticality in the individual strips, and 
finally back to the two-dimensional behavior on a new, superlanice level. 
This qualitative understanding of the physical content of the model allows for 
semiquantitative description of the temperature dependence of spontaneous 
magnetization and magnetic susceptibility, which have been previously obscure. 

KEY WORDS: Critical phenomena; superlattices; magnetic multilayers; 
dimensional crossover; exact solutions; layered Ising models. 

1. I N T R O D U C T I O N  

The  so lu t ion  given by O n s a g e r  to the p r o b l e m  of  a spat ia l ly  h o m o g e n e o u s  

p l a n a r  Is ing m o d e l  c~ inspi red  n u m e r o u s  va r i a t ions  on  the m a i n  theme.  
M a n y  p r o b l e m s  ob t a ined  by inc lud ing  va r ious  spat ia l  i nhomogene i t i e s  in to  

the or ig ina l  m o d e l  tu rned  ou t  to be to a cer ta in  degree  so lvable  as well. ~2) 

T h o s e  so lu t ions  as well as their  subsequen t  scal ing analysis  p rov ided  a 

m a j o r  c o n t r i b u t i o n  to the cur ren t  u n d e r s t a n d i n g  of  the effects of  finite 
size,~-,~ surfaces,~2, 5) and  disorder ,  c2'6~ 
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One of the models allowing for an explicit evaluation of its free energy 
is a planar Ising superlattice. It can be generally defined as an Ising lattice 
in which the nearest-neighbor spin couplings vary periodically with one of 
the two spatial coordinates. Its simplest realization is a lattice composed of 
alternating strips of two different homogeneous Ising ferromagnets. An 
explicit, albeit rather complicated expression for its free energy was first 
obtained by Fisher and Ferdinand tT~ and then analyzed in more detail by 
Hahn and coworkers, t8~ However, the physical origin of the rather unusual 
phenomena found to take place in the model has remainded to a large 
degree obscured. 

Our interest in the model is twofold. On one hand, recent progress 
in creating artificial magnetic heterostructures ~ requires an adequate 
development of the theory. While the related experimental and theoretical 
effort has been so far mostly concentrated on the properties of the resulting 
low-temperature phases, one may expect that the increasingly precise 
experiments will soon raise the question of universal features associated 
with the critical phenomena in magnetic multilayers. To this end the exact 
results for the planar Ising superlattice may provide a valuable insight into 
the new physics characteristic of superlattices. Besides qualitative under- 
standing of the general principles which may apply to three-dimensional 
systems as well, the results of this paper are directly relevant to experiments 
on thin magnetic films cut out of a d =  3 superlattice, or deposited on a 
periodically modulated substrate. 

On the other hand, the problem of phase transitions in multilayers is 
of considerable fundamental importance as well. The periodic reduced tem- 
perature field t(z) appearing in a magnetic superlattice due to the difference 
in the strengths of spin couplings of the composing magnets arranged in 
layers perpendicular to the "growth direction" z provides a particularly 
simple and yet nontrivial example of a critical state perturbed by a strong 
and rapidly varying relevant field. While, as has been already mentioned 
above, particular examples of this situation, i.e., models with surfaces, dis- 
order, etc., have been thoroughly studied before, the current understanding 
of the response to a general form of such perturbation is still largely 
incomplete. This has been underscored recently by the failure of the 
standard models of disorder to account for phenomena observed in porous 
materials.1101 

Based on the standard scaling ideas one may anticipate that the 
qualitative behavior at a phase transition in a superlattice is determined by 
the relative value of two lengths: the period of the superlattice l and 
the correlation length ~ oc At-" determined by the amplitude At of the 
oscillating part of t. Here v is the correlation length exponent of the bulk 
components, as we consider the simplest case of two alternating layers 
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belonging to the same bulk universality class. We will see, however, below 
for the specific case of the d =  2 Ising universality class that, at least in the 
thick layer limit, 1>> At-", the resulting behavior is quite nontrivial and is 
not determined by the bulk scaling alone. 

The general problem of describing the response of a critical system to 
inhomogeneous relevant fields has been formulated in refs. 11-13, where a 
natural variational approach to the problem has been proposed. Indeed an 
effective local variational principle has been found for the d---1 Ising 
model (~4' ~J) and for the class of d = 2  Ising models in zero magnetic field 
with arbitrary variation of the bond strengths, t = t(z), along a certain z 
direction.(12,~3) The latter result has been based on an earlier work (~51 
demonstrating that the partition sum of this class of models factorizes 
into a product over a set of fictitious d =  1 Ising chains labeled by the 
wavenumber q along the other, y direction, in which the system remains 
homogeneous. 

In what follows, these new techniques are applied to the conth~uous, 
field-theoretic limit of the planar Ising superlattice, as defined in refs. 11 
and 13 for the general class of layered Ising models. We will obtain simple 
exact explicit expressions for the free energy of the system, as well as for the 
energy (i.e., domain wall) density e(z). More importantly, studying the 
evolution of the energy density components eq(Z) in the long-wavelength 
limit q--, 0, one obtains important information about the behavior of the 
system on different length scales. On its basis we arrive at the qualitative 
picture of reentrant, ( d =  2) ~ (d--- 1 ) ~ ( d =  2)-dimensional crossover. It 
allows us to explain the main features of the exact solution as well as to 
predict the scaling behavior of the spontaneous magnetization and 
magnetic susceptibility, the exact evaluation of which is presumably a very 
hard task. 

It has to be stressed that the aim of this paper is to elucidate the 
universal long-wave length properties of a planar superlattice arising from 
the interplay between the critical fluctuations in its components. The results 
presented here by no means exclude much richer structures which may 
arise when the width of the strips become comparable to the atomic scale 
(or, say, a period of antiferromagnetic ordering tg)) and the strong 
microscopic interactions become involved. Correspondingly, this considera- 
tion is restricted to the limit AI~,AI2>> 1, where A is a microscopic 
wavelength defining the cutoff in our formulation. 1~3) The basic question 
arising here is whether despite the fact that the strips are "thick" on this 
microscopic scale one can still observe effects beyond a simple linear super- 
position of the intensive properties of the two components. In what follows 
we give a rather complete long-wavelength description of a superlattice in 
terms of the physical quantities which can be measured on the individual 
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bulk components. 2 The continuum formalism developed in refs. 11 and 13 
seems to be ideally suited for that. As discussed in ref. 13, while taking the 
continuum limit certainly entails losing information about phenomena at 
the microscopic level, the gain is universality: one expects the results 
obtained here to be valid for the long-wavelength properties of any peri- 
odically modulated system from the planar Ising universality class. An 
extra benefit (~3) is the equivalence of this limit to the many-body quantum 
mechanical problem of a spin-l/2 chain in a transverse field which slowly 
varies either in time or in space. 

2. EXACT RESULTS FOR THE C O N T I N U U M  M O D E L  

2.1. Def in i t ion of the Mode l  

We consider a planar Ising model composed of alternating strips of 
two components labeled with j--- 1, 2. The widths of the strips are l~ and 
12=l-1~. In terms of the formalism of refs. 12 and 13 the problem is 
defined by the values t~ and t2 which the scaled temperature field t takes 
within the corresponding strips. The function t(z) therefore has the form of 
a periodic telegraph signal: t(z)=t~ for n l < z < n l + l ~  and t=t2 for 
nl+ l~ < z < (n + 1)l, for all integers 17. The parameters tj have the dimen- 
sion of inverse length and are normalized in such a way that at any given 
temperature T their absolute values are equal to inverse correlation lengths 
~j of the corresponding bulk (homogeneous) components (12' 13). 

tj(T) = _+ 1/~j(T) (1) 

where the plus and minus signs correspond to T >  T,j and T <  Tcj, 
respectively. In terms of the original nearest-neighbor Ising model on a 
rectangular lattice, (~2' 13) the "temperatures" tj are directly related to the 
microscopic spin coupling strengths K~ = J~/kB T and KJl= JJ.I/k B T via 
tj = - [In t anh (K~)+  2K) I ]/a• where the superscripts [I, _L correspond to 
the bonds oriented parallel and perpendicular to the layers, i.e., the y axis, 
and a_t is the microscopic lattice spacing along z. However, the relation (1) 
between the tj and the corresponding bulk correlation lengths allows for 
direct identification of the t-field of a real superlattice constructed of 
components belonging to the planar Ising universality class. If the bulk 
correlations of the components have been measured, they form a direct 
input for the theory without any need to identify the bare, microscopic 
couplings. 

2 Note that "bulk" in this paper actually means "measured in a homogeneous film" of the 
given component. 
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To complete the definition of the model we should point out that the 
interracial bonds connecting the neighboring strips will be generally dif- 
ferent from those of the two components, which in our formalism u3) leads 
to additional 6-function contributions to the t-field which are located at the 
interfaces. Such f-functions, however, can be viewed as an additional, third 
type of layer in the superlattice, of thickness 13 ~ 0. In what follows we will 
concentrate on the simplest, two-component problem, which, as one will be 
able to see below, contains all the essential physics necessary for under- 
standing the multicomponent generalizations as well. Note also that the 
6-pieces are expected to be absent t~31 in the case of diffuse interfaces, 
i.e., of the interactions varying smoothly (on atomic scale) across the 
interface. 

Finally we note that due to the intrinsic anisotropy of the superlattice 
geometry it is natural c~3) to define the original lattice model on a rec- 
tangular lattice allowing for anisotropic spin couplings, K~ 4: KJ. t, in both 
components. On the phenomenological level that implies anisotropic bulk 
correlation lengths, ~ 4:r However, as shown in ref. 13, we may con- 
sider the simplest case of isotropic components, ~ = ~.l = ~j(T) =- [tj1-1 
without any loss of generality. The anisotropic case is immediately restored 
by the following mnemonic rule justified in(t3): substitute ItjL = 1/~J-I(T) 
everywhere except for the cases where tj enters multiplied by lj; the 
absolute values of the latter have to be redefined via I t j l j l -  I /~j-(T).  We 
will see below, however, that putting the strips of even perfectly isotropic 
components together in a superlattice results in anisotropic correlation 
lengths, 4 • # ~ll, at the scales larger than the period 1 of the superlattice; 
this anisotropy is intrinsic to the problem and cannot be removed by a 
simple rescaling. 

2.2. Free Energy and Transverse Corre lat ion Length 

To proceed one has to recapitulate some basic results of refs. 15 and 
11-13. Rewriting the partition function of the problem as a trace over the 
product of transfer matrices along the z direction and making transfor- 
mation to fermionic operators, one can simultaneously reduce {ts) all 
z-dependent transfer matrices to a diagonal-block form. Each 2 x 2 block 
describes the subspace of fermions with the given absolute value of the 
wave vector q along the y direction. In the continuum long-wavelength 
limit introduced in refs. 11 and 13, these symmetric matrices generate a 
continuous unitary transformation according to 

T(q, z) - 1 = [t(z)a3 + qa~] dz (2) 
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where a L 3 are the standard Pauli matrices. This establishes equivalence to 
a set of noninteracting one-dimensional Ising chains (in their respective 
continuous limits: ref. 11) for which t(z) and q play the roles of the (posi- 
tion-dependent) magnetic field and fugacity of domain walls, respectively. 
We will call these one-dimensional models "q-chains" below. 

Within each of the strips, j = 1, 2, the transformation generated by the 
SU(2) matrices (2) can be viewed as a rotation by an imaginary angle 
proportional to the width of the strip. Therefore the cumulative transfer 
matrix Tj(q) resulting after multiplication of T(q, z) within the j th  strip has 
two eigenvalues exp[+_lflcj(q)], with x j (q)=  (t)+q,_)m. The rotation axis 
lies in the (1, 3) plane in the space of the Pauli matrices making angle 
(~j(q) = tan-  ~(t/q) with the 1-axis. 

It now follows straightforwardly from the Pauli matrix algebra that 
the combined action of these two rotations applied periodically in the 
superlattice is always again a rotation by an imaginary angle proportional 
to the length of the system: ...T~T2TtT2 . . . . . . .  ToTo .... where the basic 
matrix To(q)=T~(q)T2(q)  has eigenvalues of the form exp[_+lx(q)]. The 
"angular velocity" ~:(q) is determined via a simple generalization of the 
stereometric "cosine theorem": 

cosh/x = cosh It xl cosh 12x2 + cos(~bl -- ~b2) sinh Ii xt sinh l_,x2 (3) 

where all quantities are q-dependent. Following the basic ideas of the trans- 
fer matrix formalism, tt~l one establishes that x(q) gives the free energy per 
unit length of the q-chain by F(q) = - ka Tx(q), so that the free energy per 
unit area of the superlattice is 

F= - k B T  fq x(q) (4) 

At the same time ~:(q) is the inverse of the correlation length r of the 
q-chain, so that a simple one-dimensional hyperscaling relation F(q)-- 
- kaT ie (q )  is satisfied by each chain. Naturally, the correlation length 
4• of the system along the z direction (i.e., perpendicular to the strips) is 
determined by the largest ~(q) over all q. As x(q) defined by ( i)  is always 
minimal at q =  0, the inverse correlation length ~_J of the superlattice in 
the direction across the strips is given by 

~7. '(T) = I11 t, + l:t2 I/l= Ill r +_ 12r (5) 

where [cf. (1)] the plus and minus signs in the second expression on the 
right-hand side correspond to the two components being on the same 
(T<T,.I<T,.  2 or T,.I<Tc2<T) or on different (Tc j<T<Tc2)  sides of 
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their bulk critical points, respectively. The advantage of this second expres- 
sion in (5) is that it represents the answer via directly measurable correla- 
tion lengths ~I(T), r of the bulk components (see footnote 2). 

2.3. Energy Density Components 

The variational formalism of refs. 11-13 has not been really used so 
far: the principal result (3) has been obtained by combination of the 
mapping onto the set of one-dimensional q-chains ~151 with the continuous 
limit of those."" ,31 The variational principle yields, however, much more 
information: it allows calculation of the q-components ~q(z) of the energy 
density profile e(z). The computation is straightforward: within each strip 
the field t is uniform, so that the general solutions of the Euler-Lagrange 
equations which equilibrium profiles eq(Z) have to satisfy are readily 
available.~12, 13) Taking into account that the middle point z,u of any strip 
of the j th  component is a center of symmetry of the system, one obtains 
within that strip 

e,~(z) = cos(Oj) sin(~bj) + sin(Oj) cos(~bj) cosh [2~:j(z - z,,j)] (6) 

where all quantities are q-dependent, j characterizes the component of 
which the given strip is made, and the only two remaining unknowns 
are the parameters Oj defined by matching the solutions (8) at the 
interfaces between the strips. Matching leads to a biquadratic equation 
yielding 

sin(~b 2 -- ~b I )/sinh (~: lll) 
sin[O,(q)] = (7) 

[c~ + c~ + 2 cos(~ 2 - -  q~l )el s  - -  sin2(~b2 - ~bl)]'/2 

and cos(01)>0. Here cj(q)= 1/tanh(xflj), j =  1, 2, and the profile within 
the second type of strip results after the obvious permutation of indices. 
Note that the permutation of indices. Note that the permutation changes 
the sign of the relative angle ~b2-~b ~, so that if the profile in one type of 
strip is convex, than that in the other is concave. A straightforward integra- 
tion of eq(z) over q gives then the full energy profile e(z). Integrating e,(z) 
over z, one obtains the full energy of the q-chain, which is in turn related 
to the free energy (3), (4) by a single integration over the temperature. 
While this is a. far more difficult way of arriving at the result (3), (4) than 
the derivation given in the previous subsection, we will see below that the 
profiles eq(Z) contain plenty of additional information about the behavior 
of the system. 
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3. A N A L Y S I S :  C R I T I C A L  T E M P E R A T U R E ,  SPECIF IC  HEAT,  
A N D  C O R R E L A T I O N  L E N G T H S  

From (5) one immediately finds, in agreement with the previous 
results, tT. 8~ that the correlation length diverges and the superlattice is criti- 
cal when the total temperature field per unit length, to = (l i t  I +12t2)/l = 
1/r vanishes. This condition of criticality can be again rewritten 
via (1), (5) in a simple universal form [note that t ~ = l / ~ ( T ) ,  but 
t2 = - 1/~2(T) near Tel 

Ii/~t(Tr = 12/~2(Tc) =-go (8) 

which allows for prediction of the critical temperature of the superlattice 
when the temperature dependences of the correlation lengths in the bulk 
components are known. 

Equation (8) defines a dimensionless scaling parameter g c ~ l d t " ,  
where (cf. Introduction) At = ( t l - -  t2)/2,-~ 1/~l(Tc2)~ 1/~2(Tcl) is the 
amplitude of the variation of the temperature field. The correlation length 
exponent is v = 1 in the planar Ising universality class. This parameter 
enters scaling functions characterizing the criticality in the system qualita- 
tively separating the thin-strip, g c ~ l ,  and the thick-strip, g ~ > l ,  
regimes. 

A particularly important quantity is the specific heat per unit area, which 
follows from the standard thermodynamic relation C = - T dZF(T) /dT  2. In 
the general case the temperature dependence of the free energy F(T)  is 
implicitly defined by (3), (4), resulting in F=F( t~ ,  tz), and by empirical 
temperature dependences of the bulk correlation lengths, to which the tj 
are directly related via (1). In the important limit of the two components 
having critical temperatures close to each other, To t -T~2 '~  Tcl,2, one  
can use t~.2= to+(212. t / l )dt ,  where 3t  is approximately constant and to 
varies linearly with the external temperature throughout the whole range 
T~I < T <  T~2. Note that despite the condition T ~ -  T~2,~ T~ m,  the 
parameter g~ still can be large if the strips are sufficiently thick. With this 
simplification one can explicitly evaluate the specific heat (up to a non- 
universal metrical factor): 

f~ OzX(to, zlt, Ii, 12) dq 
C (9) Jo ato ~ 2~ 

In the limit A ~ ~ the function 

c~(tol, g,.,l~/12)= lim [C(to, At, l~,12, A ) - I n A / 2 r c ]  (10) 
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becomes universal, representing the singular part of the specific heat for the 
whole universality class of planar Ising superlattices. The singular part of 
the specific heat is shown in Fig. 1 against the reduced temperature t o in 
the case of a symmetric superlattice, l~ = 12 = l/2 (the asymmetry of the 
superlattice does not seem to have important consequences for its 
qualitative behavior). Different curves correspond to different periods of 
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Fig. 1. Critical part of the specific heat vs. temperature curves for a sequence of symmetric, 
I~ = 12 = I /2 ,  superlattices in (a) normal and (b) semilogarithmic coordinates. The superlattices 
are composed of the same pair of components: the reduced critical temperature difference is 
3t = 1, while the thickness of the strips varies as measured by the scaling parameter g~. The 
log-normal plot in (b) shows the logarithmic divergence of the central peak. 
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the superlattice l at fixed At = 1. This corresponds to an experimentally 
relevant situation in which the pair of components is fixed, while the period 
of the superlattice may be varied by preparation of the sample. One can 
clearly see that the variation in gc "~ zltl leads to evolution in the form of 
the temperature dependence of the specific heat from one broad central 
peak in the thin-film limit of small gc to a triple-peak structure for thick 
strips/large g,.. The two side peaks in the latter case are rounded, while the 
central one is truly divergent. As one can also see from the logarithmic 
plots (Fig. Ib), the divergence is logarithmic for any g,., but its amplitude 
rapidly falls as g,. increases. This triple-peak structure was obtained earlier 
by Hahn and coworkers tS~ on the basis of their approximate treatment of 
the thick-strip limit. 

Both thick- and thin-strip limits can be described analytically. In the 
case of a thin-strip superlattice for all q, t ~ /  ~ Eq. (3) reduces to 

K2(q)= to+q2 = CZ'-+q2 (11) 

with 3• defined in (5). This is nothing but the bulk law (cf. expressions 
given above for ~ i , j =  1, 2) with the weighted average (5) standing in place 
of the scaled temperature. Physically this means that as soon as the correla- 
tion lengths of the components grow to the order of the period of the 
superlattice, the fluctuations wipe out the layered structure, reducing the 
superlattice to an effectively homogeneous model. 

The situation in the thick-strip limit is quite different and in fact more 
interesting. Near the critical temperature, say T,.2, of the second component, 
which has higher ordering temperature and thus stronger ferromagnetic 
couplings, the correlation length of the other component, ~ ,  is too short to 
effectively couple the near-critical strips to each other. Correspondingly the 
rounded specific heat peak appearing at T,. 2 (Fig. 1) asymptotically (as 
g,. --, ~v ) reduces to that of a jS"ee film of the second component. A free film, 
being an important object in its own right, can be described within our 
model by taking the limit II'-' ~3~ t~ ~ ~v in which the bonds connecting 
consequent 2-strips are completely broken. The thermodynamic properties 
of the free film are then determined from (3): Fo = - k 8  T Sq xo(q), where 

lzKo = In [cosh(/2 xz) + sin(~b2) sinh(12 x2)] (12) 

Here the (divergent) contribution from the 1-strips has been subtracted to 
obtain the proper free-film limit. The resulting specific heat function, 

Co(t) = 8"-Fo/St~ = ~o(12/~ 2_-( T) ) + ln(A )/(2r0 (13) 
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with universal dimensionless cg o, grows logarithmically until r exceeds 
the order of the film thickness 12. At this point Co reaches the value 

Co -~ Co(To2) ~ ln(12 A )/(2n) (14) 

and rounds up. Due to the symmetry of the system under the change of the 
sign of the temperature field, t --. - t (which can be traced back to the self- 
duality of the planar Ising model), the specific heat peak at Tot in the 
thick-strip limit is described by the same scaling function Co, although in 
this latter case the system is equivalent to a sequence of noninteracting 
films with fi'ozen rather than free boundaries. In a free film the maximum 
of the specific heat is shifted along the tzl2 = +_ 12/~2 axis toward low tem- 
peratures by a universal amount. 14~ Taking into account the presence of the 
first component (i.e., finite correlation length r = It~l - t )  yields a negative 
correction to the shift, which is, however, exponentially small in tl 1~ ~ g~,.~8~ 

In the vicinity of the critical temperature T,. defined via the first 
equality in (8), the divergent, central peak of the specific heat can be 
analyzed on the basis of the low-q expansion 

h:2(q) = ~.~2 -'1- X2q "- + O(q 4) = ,~Z2[ 1 + (~uq) 2 ] (15) 

valid for q ,~ At and I l t~ + 12t2 '~ 1. The right-hand side defines the singular 
part of the correlation length ~u of the superlattice measured parallel to the 
strips. The ratio X =  ~u/r177 so that ~11 = Xto"-= Xto  i, provides a measure 
for the macroscopic anisotropy of the superlattice. From standard hyper- 
scaling arguments it follows now that the amplitude A of the singular part 
of the specific heat, C ~  A I n ( T -  T,.), is determined by X as well: A ~ X-~. 
Expanding both sides of (3) to the leading order in q2 near T,., one obtains 

X 2 = l + ( [ t ' 1 - 1 7 2 1 t 2 [  ,)2[g~+sinh2(g,.)]  (16) 

This expression describes the crossover exhibited by the superlattice trans- 
ition at T,. from essentially isotropic behavior, X ~  1, in the thin-strip limit, 
gc'~ 1, to exponentially strong anisotropy, X~exp(g, .) /(2gc),  in the other 
extreme, g,, ~ 1. Thus in the thick-strip limit the critical component of the 
diffuse scattering peak from the superlattice is predicted to be extremely 
narrow in the direction parallel to the strips, implying very long-range 
correlations in that direction. On the other hand, the amplitude of the 
central specific heat peak, as evident from Fig. 1, rapidly decreases in the 
same limit, ~8~ while the side peaks grow. The central peak represents, 
however, the only true divergence in the system for any finite g,.. 
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4. ANALYSIS:  ENERGY DENSITY C O M P O N E N T S  

Additional insight into the problem is obtained by observing the 
evolution of the partial  energy profiles eq(Z) given by (6), (7), with decreas- 
ing wave number  q ~ 0 (Fig. 2). As discussed elsewhere, u6~ this evolution 
appears  to exhibit many  features of a functional renormalizat ion group 
flow. t~8~ It  always starts from a homogeneous  ultraviolet stable (i.e., stable 
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Fig. 2. Evolut ion  of the part ial  energy density profile %(z) with decreasing wavenumber  q 
for the value of the overall  reduced tempera ture  to=0 .1  in (a) thin-strip,  g c = 0 . 3 ,  and  
(b) thick-strip,  gc = 5.0, superlattice. The coordinate  z and  the wavenumbers  q in both plots 
are scaled by the thickness of a single layer / 1 = 12 = I/2. 
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as q ~ ~ )  fixed-point profile eq =0.  This fixed point is unstable in the 
other, long-wavelength limit, where, except for the critical point, the 
profiles approach one of the infrared stable homogeneous fixed points: 
~q = "[- 1 and ~q = - -  1, describing the high- and the low-temperature states 
of the system, respectively. In the case of a thin-strip superlattice, gc'~ 1, 
the critical domain is essentially defined by I to l<  1-t. It encompasses both 
bulk critical temperatures and the whole interesting region between them. 
Within this critical range the evolution of eq(Z) proceeds essentially 
uniformly in the whole system (Fig. 2a) and is completed within the range 
of scales A > q > ~ll = ~• the latter being the only important length scale 
in the problem. 

The situation is again more interesting, however, in the thick-strip 
limit at temperatures Tc~ ~< T~< To2 (Fig. 2b). As q decreases below a value 
of order d t ~  ~}-~, the energy density components come close to the two 
different fixed point values, ~q = -[- 1 and eq = -- 1, within the strips of the 
first and the second components, respectively. These quasihomogeneous 
regions are separated by the kinklike solutions describing an interface 
between the high- and the low-temperature phases. (t2, 13) The characteristic 
interface width is of order At -1 ~1~, 12 in the thick-strip limit under con- 
sideration. This inhomogeneous structure remains almost unchanged over 
an exponentially wide range of scales X -  ~ At < q < At. If the system is not 
particularly close to the criticality at To, at still larger scales the evolution 
proceeds according to the "winner takes all" scenario: if ]t~l~l <1t2121, then 
the eq = + 1 domains flip over to the dominant eq = - 1 state dictated by 
the second component or vice versa. If, however, ~.L >> l, i.e., the system is 
close to criticality, then at q > X A t  the profiles first get back close to the 
critical fixed point e q -  0 and only at still larger scales, q > r 1 7 7  
the system evolves to one of the massive, ~q = "Jr- 1, states. Thus within the 
temperature range of width ~ ! -  ~ around Tc the system is characterized by 
three characteristic length scales along the strip direction describing three 
different crossovers: (1) formation of the eq= + 1 domains at the scale 
~b"~ At- t  of the order of the bulk correlation lengths of the components, 
~b~ Cj(T~), (2) smearing out of these domains at much larger crossover 
scale ~cgX~b, and, finally, (3) attraction by one of the noncritical states 
at ~11 = X  C• happening uniformly throughout the superlattice. The latter 
scale is the true correlation length diverging at the phase transition at T~ 
[cf. (5)]. Note that the second crossover scale, ~c, depends essentially on 
the properties of a single strip, but not on the global balance between the 
values It~l~l and 1t2121 measuring the tendencies to formation of the high- 
and the low-temperature phases. That balance defines the scales ~• 
characterizing the third crossover, as well as the ultimate destination of the 
flow. 
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The nature of the second crossover and of the exponential dependence 
of length ~c on the parameter g,.~l/~b is most clearly seen from the 
analysis of the free-film limit, t~ = + co, ~ = 0 .  In this case ~q takes the 
high-temperature value + 1 everywhere outside the j =  2 film for all q. At 
t 2 > 0 ,  i.e., T >  Tc2, the eq profile inside the film monotonical ly increases 
from zero at large q to the background value, eq= + 1, at small q. 
However, below the bulk critical temperature, T<Tc2, at q<lt,_l the 
profile of eq(z) develops a domain of the low-temperature state, eq= - 1 ,  
inside the film. The latter holds until q decreases below the value 
~,71~lt21exp(12 It,_l) at which the domain flips over to the high-tem- 
perature phase value + 1 enforced on it by the environment. At this point 
we recall the relation 3 ~2(T)=kBT/2S2(T) connecting the correlation 
length in the low-temperature phase of the planar Ising model to the linear 
tension of a domain wall separating domains of the opposite spin orienta- 
tions. 4 This leads to the expression 

~ ~, exp[2S2(T)12/kB T] (17) 

The exponential form on the right-hand side of (20) has been shown C19~ to 
give the leading, exponential factor in the temperature variation of correla- 
tion length of an Ising film (i.e., strip) at low temperatures. The underlying 
physics is that at large scales the strip becomes equivalent to a one-dimen- 
sional Ising model. Indeed, the inverse length 1/~c is nothing but the 
Boltzmann factor (fugacity) of a pair of domain walls across the film. The 
latter is known (e.g., ref. 20) to be the elementary excitation leading to 
disordering of the linear Ising model at low temperatures. Note  that 
formally, in the language of the eq(Z) profiles, the crossover happens when 
the va lue~exp(- t21_ , )  which the exponential tale of the interface (see 
footnote 4) adds to the profile in the bulk of the film, becomes of order 
of the difference I - 1 -  ~q21 between the bulk energy density value eqZ = 
t2/(t~+ q2),/,_ and the completely ordered state e,~= - 1 .  Recalling that eq 
essentially represents the density of excitations (i.e., domain wall loops) of 
size q - t ,  we can interpret ~c as the scale at which the fluctuations induced 
by the boundaries of the film start dominat ing the intrinsic, bulk ones. 

3The relation follows from the simple "bubble" picture of correlations, see, e.g., ref. 18, 
Section 11: the dominant contribution to the correlation between two spins at a distance r 
apart comes from the configuration in which both spins are included in a single domain 
having the form of a narrow finger of length r. The two walls of the finger contribute the 
energy 2X2/" tO the Boltzmann factor exp(-2X2r/k B T)= exp(-r/r 

4 It is important to keep in mind that the domain walls between different spin orientations in 
the low-temperature phase of a uniform system, with which we are dealing at the moment, 
are completely distinct from the interfaces between the high- and the low-temperature phases 
in different strips appearing due to inhomogeneities in the scaled temperature field t. 
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Returning to the original problem of a thick strip superlattice, we 
arrive at the following physical picture (Fig. 3). As the temperature is 
decreased toward the higher of the bulk critical temperatures of the two 
components, To2, the superlattice behaves as a simple mixture of the bulk 
components until the correlation length of the stronger, second component 
grows to the value of the order of the strip width 12. After this happens the 
spins of the second component are essentially correlated across each strip, 
and the strips become equivalent to one-dimensional Ising chains. An 
individual strip (film) remains, however, disordered at any positive tem- 
perature due to creation of domain walls across the strip, which break the 
strip into a sequence of domains of opposite spin orientations. At scales 
smaller/larger than the typical domain size ~ the strip is essentially 

. - - - - - 4  

- ~ . ~ .  4 . .  

. ._ .  

l~ l ,  _ 

Fig. 3. Schemalic picture of spin-spin correlations in a thick-strip superlattice in the tem- 
perature range 7",.< T <  To2. Strips of the more strongly coupled, second component are 
broken into long domains with different spin orientations. The dotted fines symbolize 
exponentially weak coupling between domains in neighboring strips via fluctuations in the 
first component. Near 7",. the value of this coupling pet" domain becomes O(1), leading to 
formation of superstructural domains of the third level, and eventually to a long-range order 
in the superlattice. 

822/78,,'1-2-7 
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ordered/disordered, which explains the values e = _  1 the energy com- 
ponents take within the regions occupied by the second component at q 
larger/smaller than ~ j l .  In a superlattice, however, the domains of the 
second component are coupled across the strips of the weaker, first compo- 
nent due to the finite value of the correlation length r = t~ -~ of the latter. 
The value of this coupling per unit spin is proportional to exp(- l~/~l) ,  
which is the value of a perturbation at one boundary of the j =  1 strip 
carried to the other boundary by the correlations in the j =  1 component. 
It is very small away from Tc~. However, the real fluctuating unit at 
Tc~ < T <  Tc2 is not a single spin, but a correlated domain of length ~c. 
The relevant energy scale then is the coupling per single domain, 

r exp(--l l /~l  ) OC. exp(/2/~2- l~/r The critical temperature T,. is thus 
[exactly! cf. (8)] determined as the one at which the exponentially large 
domain size ~c compensates the exponential weakness of couplings through 
the paramagnetic strips. The latter then suffice to promote coherence 
between domains in different strips and thus in the whole system. The 
exponential dependence of the critical amplitude on the parameter gc =- lj/~j 
appears to be a direct consequence of the r ~ exp(2E/kBT) correlation 
length growth law characteristic of the one-dimensional Ising model, with 
the energy of an effective domain wall of the latter, E = s being propor- 
tional to the width of the strip. The picture is completed by applying the 
duality, t --* - t, to characterize the behavior at the low-temperature side of 
the transition. The nontrivial physical content of the problem comes from 
the reentrant dimensional crossover: the three regimes in the evolution of 
the profiles of eq described above are characteristic of two-dimensional, 
one-dimensional, and then again two-dimensional physics. 

5. S P O N T A N E O U S  M A G N E T I Z A T I O N  A N D  
M A G N E T I C  SUSCEPT IB IL ITY  

We now show how our qualitative understanding of the problem 
allows for some useful estimates going beyond the information provided by 
the exact solution. In particular, computation of the spontaneous 
magnetization in inhomogeneous planar Ising models is a very hard task; 
exact results when available come in so complicated a form that extracting 
useful information out of them constitutes a hard problem of its own. 
However, the simple scaling arguments given above can be developed into 
the following semiquantitative picture for a thick-strip system. 

As our superlattice exhibits the only true phase transition at T =  T C, 
the spontaneous magnetization averaged over the whole system is exactly 
zero at any T >  T c. However, before the emergence of true long-range 
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order, within the temperature range T,.< T <  T,.2 a hierarchy of large 
domains of the same spin orientation is formed in the system (Fig. 3). As 
the temperature is decreased toward T,.z the events start with appearance 
of critical spin clusters within the strips of the second component. In a 
given cluster, spins have a single preferred orientation, but due to the 
fractal structure of the cluster the absolute value of magnetization density 
(per unit area) decreases with the cluster size according to the renormaliza- 
tion group equation 

dm/dln ~ = - co , ,m  (18) 

Here ~ is the size of the cluster, or more generally, the running length scale 
of our renormalization group flow, and co,,, is the scaling dimension of 
magnetization, cod, = 2= 1/8 in the planar Ising universality class. The equa- 
tion has to be solved with the initial condition r e ( A - l ) =  too, where mo is 
the microscopic magnetization density of the order of one spin per unit ceil. 
Above To2 the size of these basic critical clusters is given by the bulk 
correlation length ~2(T)=t_; -1 which grows with decreasing temperature. 
While the clusters are disoriented at scales exceeding 12, a weak external 
magnetic field h aligns each of them with probability hm(~2)r T, thus 
inducing global magnetization density in = h z ~  (12/1)hm2(~2)~a/kaT. The 
factor 12/1 accounts for the fact that the important magnetization fluctua- 
tions are localized within the strips of the second component. This standard 
argument ~21} gives the correct susceptibility growth law x = d m / d h =  
Zo(A~2)d 2~,,,~: t~, with ?=(d--2co,,,)/oo,=(coh--com)V=7/4 in the Ising 
universality class. Here the scaling dimension of temperature, co, = 1/v = 1, 
and the standard relation, cob + co,,, = d =  2, between the scaling dimensions 
of the (here magnetization) density and the conjugate (here, corre- 
spondingly, magnetic) field have been employed. 

Below To2, in a bulk sample (i.e., homogeneous film) of the second 
component the clusters are correlated at scales larger than ~2 (which now 
decreases with decreasing temperature). Thus the value of magnetization 
saturates at 

mz( T) =mo [ A ~2( T) ] ..... ~ Mo It21 ~ (19) 

Here the spontaneous magnetization exponent is J3=co,,/co,= 1/8 and 
Mo ~ moA -,o,, is the critical amplitude of magnetization in the second com- 
ponent. In the spirit of this paper, rather than operating with the bare 
microscopic parameter too, we will often use below the empirical 
magnetization curve of the second component, m2(T), as the initial condi- 
tion for the renormalization group flow equation (18) at scales greater 
than r 
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The phenomena developing in a superlattice are more complicated. 
With the temperature decreasing toward To2, the size of the clusters 
increases until, at t2 ~ 1/12, it reaches the limits set by the boundaries of a 
strip. At this point, i.e., at T~ = Tc2[1 + O(1-~)], each strip is broken into 
roughly equilateral domains of size 12 with the absolute value of magnetiza- 
tion density ~mo(Al2) . . . .  in each of them. The corresponding value of 
susceptibility is Z'~xo(AI2)% ),=7/4. This state of the system is not 
significantly changed until the temperature is lowered to TT_, defined via 
t 2~ -1 /12 .  At that point the first bifurcation in the temperature 
dependence of the spin-spin correlations takes place. As the temperature 
keeps decreasing toward Tc the size of the basic critical clusters in the 
second component starts decreasing proportional to the bulk correlation 
length ~2(T) providing increasing magnetization density value malT) at 
scales larger than ~z(T). At the same time, an emerging system of domain 
walls breaks the strips of the second component into long and narrow 
domains of essentially d =  1 Ising nature (Fig. 3). The length ~ll of these 
new domains starts growing according to Eq. (17), as the energy of the 
domain walls Z'2(T) increases in the low-temperature phase of the second 
component. These new clusters are essentially critical clusters of the linear 
Ising model; therefore to determine the value of magnetization in them one 

a= ~ characteristic of the d = 1 would need to integrate Eq. (18) with 09,,, = 09,, 
a=~ = 0 , ~  these d =  1 Ising clusters are not Ising behavior. However, as ~o,, 

fractal and m2(T) characterizes the magnetization density at all scales 
between 42 and ~H. Note that as these second-level clusters, or more 
precisely correlations in the system, are anisotropic, one has to use 
~H = l/q, the scale in the direction along the strip, in which the system is 
uniform, as the running variable of the renormalization group equations, 
just as has been already done in the previous section. To complete the 
description one can in fact complement (18) with a somewhat trivial 
equation 

dr  In r = 09• ~• (20) 

where 09• = 1 and 0 in the two- and one-dimensional regimes, respectively. 
On scales larger than ~lt above Tc different clusters are uncorrelated, so 
that the spontaneous magnetization is absent, while the susceptibility is 
estimated as above: 

g ~ (1~/l) m2( T)[m2( T) 12~ll( T)/k B T] (21) 

The susceptibility keeps growing below To2 mostly due to the exponential 
increase in ~H, (17), with the growth of m2(T), (19), adding an additional 
growing power-law prefactor. 
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This one-dimensional behavior spans the wide temperature range 
T~z>T>T~ + with Tf=T~[I+O(I -~)] .  The latter is defined by the 
condition that the correlation length ~ l = t  -I  exceeds the period of the 
superlattice/. Below T~ + the second-level clusters in neighboring strips start 
interacting strongly, forming d =  2 critical clusters characteristic again of 
the planar Ising behavior. Near T~ the length of the second-level clusters 
reaches the value ~ and the absolute value of magnetization density is 
m.~m2(Tc)~mo(zJt/A)P; both do not change significantly within the 
critical interval t <  l - l .  The two correlation lengths ~u, ~• of the system, 
which diverge at T~, are now associated with the two dimensions of the new, 
third-level clusters. According to (20), where co• = 1 again, both lengths 
grow similarly at this stage, ~u oc ~• = t - L  However the difference in the 
initial conditions, ~.(~,, = ~)  ~ l~  ~ ~ e g~, appearing due to inhibited 
growth of 3• in the second, quasi-one-dimensional regime, results in the 
constant anisotropy factor r162162  in full agreement with the 
exact results above. The absolute value of magnetization density within a 
third-level cluster follows from (18), (19) as 

m ~ m 2 ( T c ) ( l / ~ •  '~ = mz(T c) Itll ~ = m 2 ( T ~ )  [ l l / ~ l ( T )  - 12 /~2(T)1  ~ 

~mog  ~ Itl a (22) 

Above Tc in this regime the susceptibility is 

z~m2~u~l/kBT~m~(T,.)(tl)2P Xt-2/kBT~X(gc)g~tJZot~' (23) 

One can see that at large go, the critical amplitude of susceptibility is much 
larger than that of the bulk second component. Below T,., the third-level 
clusters are ordered, so that m(T) is nothing but the spontaneous 
magnetization of the superlattice. Again the critical amplitude is increased 
with respect to the original amplitude Mo of the second component by 
a large factor g~. As t decreases to the value ~ - l / l ,  i.e., at T~-= 
To[1 -- O(l-~)], the steeply rising magnetization curve of the superlattice 
reaches the value of order m2(T). At that point the third-level clusters 
shrink to the size of the second-level clusters. That means that the latter 
get ordered, and from the point of view of the magnetization fluctuations, 
both third- and second-level clusters disappear, leaving essentially bulk- 
like structure in the strips of the second component. Near Tom the total 
magnetization.of the superlattice gets an additional contribution from 
ordering in the strips of the first component. The latter can be viewed as 
a phase transition in external field induced by the second component, 
which can be analyzed similarly to the above. 
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6. D I S C U S S I O N  

In summary, an explicit exact solution for the free energy and energy 
density components of the continuum limit of a planar Ising superlattice in 
zero magnetic field has been obtained and analyzed. The analysis leads to 
a rather complete long-wavelength description of the planar Ising superlat- 
tices; it includes a prediction for the critical temperature of the superlattice, 
and for the temperature dependences of the specific heat and of the 
(anisotropic) correlation lengths. All results take universal form after 
being expressed through the correlation lengths ~j(T) of the two bulk com- 
ponents ( j =  1, 2), which are supposed to be measured independently. 
Where applicable, our conclusions agree with those of earlier papers, tv's) 
Two predictions for the thick-strip limit of the model have to be 
emphasized: one is the existence of three separate peaks in the temperature 
dependence of the specific heat (Fig. 1 ), another is the presence of exponen- 
tially large correlation length in a wide temperature interval between the 
bulk critical temperatures T,.I and T~2 of the components. 

Our analysis leads further to the qualitative picture of reentrant, 
d =  2 ~ d =  1 ~ d =  2-dimensional crossover underlying these unusual 
properties of the model. The essential content of the crossover is that 
fluctuations on different scales (i.e., with different wavelengths) exhibit 
properties characteristic of different spatial dimensionalities. The one- 
dimensional character of fluctuations in the intermediate regime leads 
further to the extreme anisotropy of the reentrant, two-dimensional fluctua- 
tions at the largest scales. At different temperatures different fluctuations 
dominate the behavior of the system. One may say that the two side peaks 
of the specific heat curve (Fig. 1) indicate creation of the domain structure 
up to the scale of the period of the superlattice. The large, exponentially 
growing correlation length accompanied with the decrease in the value of 
the specific heat then reflects essentially one-dimensional fluctuations in 
this large-scale structure. Finally, as the correlations break through across 
the layers, the critical two-dimensional ordering is displayed by the central 
divergent specific heat peak. The utility of this qualitative understanding 
of the problem is further demonstrated by calculating the crossovers and 
critical amplitudes for the spontaneous magnetization and magnetic sus- 
ceptibility in the problem. One should note here anomalously large critical 
amplitudes of both. 

Besides direct relevance to potential experiments on magnetic films 
(cut out of, or deposited upon, a slice of a three-dimensional superlattice), 
it is argued in a separate publication ~22) that the qualitative picture of re- 
entrant dimensional crossover holds and allows for a rather complete scal- 
ing picture of critical phenomena in real three-dimensional superlattices. 
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In particular, very similar effects of crossover between ( d - 1 ) -  and 
d-dimensional behavior are to be expected for a d =  3 superlattice com- 
posed of two magnets belonging to the Heisenberg universality class, as the 
latter also lacks ordered phase while exhibiting exponentially large correla- 
tion length in d = 2. The functional renormalization group flow realized by 
evolution of the partial energy density profiles, eq(Z), which we used above 
to clarify the physical contents of the problem, appears to be useful far 
beyond the specific superlattice geometry. In fact, in another paper t~6~ we 
demonstrate that it allows for a rather complete classification of critical 
behavior in a general type of planar layered Ising model (as defined in 
ref. 13), including the celebrated McCoy-Wu random multilayer. One 
must, however, exercise certain care in using the planar superlattice as a 
model for three-dimensional systems: it is well know that the domain wall 
excitations playing the central role in our approach here are not sufficient 
in describing the onset of long-range order in higher dimensions. 

Four further comments are in order. 

1. The qualitative large-scale behavior of the superlattice in the 
temperature range T~.~< T~< To2 is similar to that characteristic of highly 
anisotropic elementary rectangular lattices which have been studied 
previously (ref. 1; ref. 21, Section IV.9, and references cited there). Such a 
lattice can be obtained by an obvious integrating out of the fluctuations on 
scales smaller than l, resulting in the strength of the weak bonds of order 
e-h/r ~ e-gc~ 1. This can be visualized by shrinking the domains appear- 
ing in Fig. 3 to elementary cites of a new lattice. Note that all the non- 
trivial properties of the superlattice are expressed via the anisotropy 
parameter X. This comes at no surprise of course: while one could hardly 
expect that a periodic modulation of the temperature field in the problem 
could become a relevant perturbation changing the universality class of the 
transition, the anisotropy is known to be a marginal perturbation with 
respect to the planar Ising renormalization-group fixed point. 

2. While the analysis of Section 5 operates with the intuitively 
appealing picture of nested critical (fractal) clusters, real quantitative 
description has to be formulated in terms of the spin-spin correlation func- 
tions. Different types of clusters then correspond to different components of 
the correlation function dominating correlations over different distance 
ranges. Those components are likely to be in one-to-one correspondence 
with singularities exhibited by the Fourier transform of the spin correlation 
function. ~23~ The imaginary part of such a singularity defines the inverse 
corelation lengths of the corresponding component of the correlation func- 
tion. Near Tc we expect to find at least four different singularities: relatively 
high up on the imaginary axis are the two branch points corresponding to 
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the noncritical bulk correlations in the two components, further down is 
the one responsible for extremely anisotropic (d=  1)-like correlations along 
the strips, and finally, the lowest branch point yields the most long-range 
correlations sweeping across the superlattice. The crossover temperatures 
T~-, T~ + , etc., may then be formally defined via bifurcations in the correla- 
tion length spectrum. 

3. It is clear that as the short-range correlations dominate the fluc- 
tuations at smaller scales, their amplitudes have to be much larger than 
those of the long-range components, reflecting that only a small fraction of 
the degrees of freedom of the system are involved in the latter. This is 
clearly seen also from the size of the different peaks of the specific heat 
(Fig. 1) if one remembers the relation between the specific heat and the 
energy-energy correlation function: the long-range, critical component of 
these correlations leading to the divergent specific heat peak at Tc has an 
amplitude which is exponentially small in the thick-strip limit. 

Note that in the same limit an exponentially large correlation length 
persists over the temperature range of order unity, thus defying the usual 
necessity of fine tuning to the critical regime. The price one has to pay, 
though, is the exponentially small amplitude of that "generically critical" 
component. Note that different response functions, i.e., the specific heat and 
the magnetic susceptibility, determined by the zero-wavenumber compo- 
nent of the corresponding correlation functions, may be either small, like 
the specific heat, or large, like the susceptibility, depending on the relative 
values of the correlation lengths and amplitudes. 

4. Finally, we have in fact achieved our goal of expressing the 
properties of a superlattice composed of thick strips via macroobservables 
of the components. However, unlike the simple additive thermodynamics of 
Gaussian systems, the critical state of matter considered here is charac- 
terized by an essentially nonlhzear dependence of the thermodynamic quan- 
tities of the composite structure on those of the individual components. 
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